opencv中Mat与IplImage,CVMat类型之间转换

发布时间:2017-1-20 9:41:42 编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"opencv中Mat与IplImage,CVMat类型之间转换",主要涉及到opencv中Mat与IplImage,CVMat类型之间转换方面的内容,对于opencv中Mat与IplImage,CVMat类型之间转换感兴趣的同学可以参考一下。

opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利 Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Matlab中的各种矩阵运算),所以将IplImage类型和CvMat类型转换为Mat类型更易于数据处理。 Mat类型可用于直接存储图像信息,通过函数imread、imwrite、imshow等实现(与Matlab中的函数相似),似乎在某种程度上可以取代IplImage类型。 (1)将IplImage类型转换到Mat类型 Mat::Mat(const IplImage* img, bool copyData=false); 默认情况下,新的Mat类型与原来的IplImage类型共享图像数据,转换只是创建一个Mat矩阵头。当将参数copyData设为true后,就会复制整个图像数据。 例: IplImage*iplImg = cvLoadImage("greatwave.jpg", 1); Matmtx(iplImg); // IplImage* ->Mat 共享数据 // or : Mat mtx = iplImg; (2)将Mat类型转换到IplImage类型 同样只是创建图像头,而没有复制数据。 例: IplImage ipl_img = img; // Mat -> IplImage (3)将CvMat类型转换为Mat类型 与IplImage的转换类似,可以选择是否复制数据。 Mat::Mat(const CvMat* m, bool copyData=false); (4)将Mat类型转换为CvMat类型 与IplImage的转换类似,不复制数据,只创建矩阵头。 例: // 假设Mat类型的imgMat图像数据存在 CvMat cvMat = imgMat; // Mat -> CvMat opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplImage类型与CvMat类型的关系类似于面向对象中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。 1. IplImage opencv中的图像信息头,该结构体定义:   ViewCode typedef struct _IplImage { int nSize; int ID; int nChannels; int alphaChannel; int depth; char colorModel[4]; char channelSeq[4]; int dataOrder; int origin; int align; int width; int height; struct _IplROI *roi; struct _IplImage *maskROI; void *imageId; struct _IplTileInfo *tileInfo; int imageSize; char *imageData; int widthStep; int BorderMode[4]; int BorderConst[4]; char *imageDataOrigin; } IplImage; dataOrder中的两个取值:交叉存取颜色通道是颜色数据排列将会是BGRBGR...的交错排列。分开的颜色通道是有几个颜色通道就分几个颜色平面存储。roi是IplROI结构体,该结构体包含了xOffset,yOffset,height,width,coi成员变量,其中xOffset,yOffset是x,y坐标,coi代表channelof interest(感兴趣的通道),非0的时候才有效。访问图像中的数据元素,分间接存储和直接存储,当图像元素为浮点型时,(uchar*) 改为 (float *):  ViewCode IplImage* img=cvLoadImage("lena.jpg", 1); CvScalar s; s=cvGet2D(img,i,j); cvSet2D(img,i,j,s); IplImage* img; //malloc memory by cvLoadImage or cvCreateImage for(int row = 0; row < img->height; row++) { for (int col = 0; col < img->width; col++) { b = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 0); g = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 1); r = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 2); } } IplImage* img; //malloc memory by cvLoadImage or cvCreateImage uchar b, g, r; // 3 channels for(int row = 0; row < img->height; row++) { for (int col = 0; col < img->width; col++) { b = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 0]; g = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 1]; r = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 2]; } }  初始化使用IplImage *,是一个指向结构体IplImage的指针:  ViewCode IplImage * cvLoadImage(const char * filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); //load images from specified image IplImage * cvCreateImage(CvSize size, int depth, int channels); //allocate memory   2.CvMat 首先,我们需要知道,第一,在OpenCV中没有向量(vector)结构。任何时候需要向量,都只需要一个列矩阵(如果需要一个转置或者共轭向量,则需要一个行矩阵)。第二,OpenCV矩阵的概念与我们在线性代数课上学习的概念相比,更抽象,尤其是矩阵的元素,并非只能取简单的数值类型,可以是多通道的值。CvMat的结构:  ViewCode typedef struct CvMat { int type; int step; int* refcount; union { uchar* ptr; short* s; int* i; float* fl; double* db; } data; union { int rows; int height; }; union { int cols; int width; }; } CvMat;  创建CvMat数据:  ViewCode CvMat * cvCreateMat(int rows, int cols, int type); CV_INLine CvMat cvMat((int rows, int cols, int type, void* data CV_DEFAULT); CvMat * cvInitMatHeader(CvMat * mat, int rows, int cols, int type, void * data CV_DEFAULT(NULL), int step CV_DEFAULT(CV_AUTOSTEP));  对矩阵数据进行访问:  ViewCode cvmSet( CvMat* mat, int row, int col, double value); cvmGet( const CvMat* mat, int row, int col ); CvScalar cvGet2D(const CvArr * arr, int idx0, int idx1); //CvArr只作为函数的形参void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value); CvMat * cvmat = cvCreateMat(4, 4, CV_32FC1); cvmat->data.fl[row * cvmat->cols + col] = (float)3.0; CvMat * cvmat = cvCreateMat(4, 4, CV_64FC1); cvmat->data.db[row * cvmat->cols + col] = 3.0; CvMat * cvmat = cvCreateMat(4, 4, CV_64FC1); CV_MAT_ELEM(*cvmat, double, row, col) = 3.0; if (CV_MAT_DEPTH(cvmat->type) == CV_32F) CV_MAT_ELEM_CN(*cvmat, float, row, col * CV_MAT_CN(cvmat->type) + ch) = (float)3.0; // ch为通道值 if (CV_MAT_DEPTH(cvmat->type) == CV_64F) CV_MAT_ELEM_CN(*cvmat, double, row, col * CV_MAT_CN(cvmat->type) + ch) = 3.0; // ch为通道值 for (int row = 0; row < cvmat->rows; row++) { p = cvmat ->data.fl + row * (cvmat->step / 4); for (int col = 0; col < cvmat->cols; col++) { *p = (float) row + col; *(p+1) = (float)row + col + 1; *(p+2) = (float)row + col + 2; p += 3; } } CvMat * vector = cvCreateMat(1,3, CV_32SC2);CV_MAT_ELEM(*vector, CvPoint, 0, 0) = cvPoint(100,100); CvMat * vector = cvCreateMat(1,3, CV_64FC4);CV_MAT_ELEM(*vector, CvScalar, 0, 0) = CvScalar(0, 0, 0, 0);  复制矩阵操作: ViewCode CvMat* M1 = cvCreateMat(4,4,CV_32FC1); CvMat* M2; M2=cvCloneMat(M1);   3.Mat Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage,相比之下Mat最大的好处就是能够更加方便的进行内存管理,不再需要程序员手动管理内存的释放。opencv2.3中提到Mat是一个多维的密集数据数组,可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。  ViewCode class CV_EXPORTS Mat { public: int flags;(Note :目前还不知道flags做什么用的) int dims; int rows,cols; uchar *data; int * refcount; ... };  从以上结构体可以看出Mat也是一个矩阵头,默认不分配内存,只是指向一块内存(注意读写保护)。初始化使用create函数或者Mat构造函数,以下整理自opencv2.3.1Manual: ViewCode Mat(nrows, ncols, type, fillValue]); M.create(nrows, ncols, type); 例子: Mat M(7,7,CV_32FC2,Scalar(1,3)); M.create(100, 60, CV_8UC(15)); int sz[] = {100, 100, 100}; Mat bigCube(3, sz, CV_8U, Scalar:all(0)); double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}}; Mat M = Mat(3, 3, CV_64F, m).inv(); Mat img(Size(320,240),CV_8UC3); Mat img(height, width, CV_8UC3, pixels, step); IplImage* img = cvLoadImage("greatwave.jpg", 1); Mat mtx(img,0); // convert IplImage* -> Mat; 访问Mat的数据元素: ViewCode Mat M; M.row(3) = M.row(3) + M.row(5) * 3; Mat M1 = M.col(1); M.col(7).copyTo(M1); Mat M; M.at<double>(i,j); M.at(uchar)(i,j); Vec3i bgr1 = M.at(Vec3b)(i,j) Vec3s bgr2 = M.at(Vec3s)(i,j) Vec3w bgr3 = M.at(Vec3w)(i,j) double sum = 0.0f; for(int row = 0; row < M.rows; row++) { const double * Mi = M.ptr<double>(row); for (int col = 0; col < M.cols; col++) sum += std::max(Mi[j], 0.); } double sum=0; MatConstIterator<double> it = M.begin<double>(), it_end = M.end<double>(); for(; it != it_end; ++it) sum += std::max(*it, 0.); Mat可进行Matlab风格的矩阵操作,如初始化的时候可以用initializers,zeros(), ones(),eye(). 除以上内容之外,Mat还有有3个重要的方法: ViewCode Mat mat = imread(const String* filename); // 读取图像 imshow(const string frameName, InputArray mat); // 显示图像 imwrite (const string& filename, InputArray img); //储存图像   4. CvMat, Mat, IplImage之间的互相转换 ViewCode IpIImage -> CvMat CvMat matheader; CvMat * mat = cvGetMat(img, &matheader); CvMat * mat = cvCreateMat(img->height, img->width, CV_64FC3); cvConvert(img, mat) IplImage -> Mat Mat::Mat(const IplImage* img, bool copyData=false); 例子: IplImage* iplImg = cvLoadImage("greatwave.jpg", 1); Mat mtx(iplImg);   Mat -> IplImage Mat M IplImage iplimage = M; CvMat -> Mat Mat::Mat(const CvMat* m, bool copyData=false); Mat -> CvMat 例子(假设Mat类型的imgMat图像数据存在): CvMat cvMat = imgMat;/*Mat -> CvMat, 类似转换到IplImage,不复制数据只创建矩阵头 ------------------------------------------------------------------- 一、Mat类型:矩阵类型,Matrix。     在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。     Mat有3个重要的方法:          1、Mat mat = imread(const String* filename);            读取图像          2、imshow(const string frameName, InputArray mat);      显示图像          3、imwrite (const string& filename, InputArray img);    储存图像     Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。 A.Mat -> IplImage 同样只是创建图像头,而没有复制数据。 例: // 假设Mat类型的imgMat图像数据存在 IplImage pImg= IplImage(imgMat);  B.Mat -> CvMat 与IplImage的转换类似,不复制数据,只创建矩阵头。 例: // 假设Mat类型的imgMat图像数据存在     CvMat cvMat = imgMat;   二、CvMat类型与IplImage类型:“图像”类型        在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。 补充:IplImage由CvMat派生,而CvMat由CvArr派生即CvArr -> CvMat -> IplImage            CvArr用作函数的参数,无论传入的是CvMat或IplImage,内部都是按CvMat处理。 1.CvMat A.CvMat-> IplImage IplImage* img = cvCreateImage(cvGetSize(mat),8,1); cvGetImage(matI,img); cvSaveImage("rice1.bmp",img); B.CvMat->Mat 与IplImage的转换类似,可以选择是否复制数据。 Mat::Mat(const CvMat* m, bool copyData=false); 在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。 但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:               CvMat* cvCreatMat(int rows ,int cols , int type); 这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。   2.IplImage 在类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。 IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。 IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。 dataOrder参数定义数据的格式。有IPL_DATA_ORDER_PIXEL和IPL_DATA_ORDER_PLANE两种取值,前者便是对于像素,不同的通道的数据交叉排列,后者表示所有通道按顺序平行排列。 IplImage类型的所有额外变量都是对“图像”的表示与计算能力的优化。 A.IplImage -> Mat IplImage* pImg = cvLoadImage("lena.jpg"); Mat img(pImg,0); // 0是不複製影像,也就是pImg與img的data共用同個記憶體位置,header各自有 B.IplImage -> CvMat 法1:CvMat mathdr, *mat = cvGetMat( img, &mathdr ); 法2:CvMat *mat = cvCreateMat( img->height, img->width, CV_64FC3 );   cvConvert( img, mat ); C.IplImage*-> BYTE* BYTE* data= img->imageData;   CvMat和IplImage创建时的一个小区别: 1、建立矩阵时,第一个参数为行数,第二个参数为列数。 CvMat* cvCreateMat( int rows, int cols, int type ); 2、建立图像时,CvSize第一个参数为宽度,即列数;第二个参数为高度,即行数。这 个和CvMat矩阵正好相反。 IplImage* cvCreateImage(CvSize size, int depth, int channels ); CvSize cvSize( int width, int height );   IplImage内部buffer每行是按4字节对齐的,CvMat没有这个限制   补充: A.BYTE*-> IplImage* img= cvCreateImageHeader(cvSize(width,height),depth,channels); cvSetData(img,data,step); //首先由cvCreateImageHeader()创建IplImage图像头,制定图像的尺寸,深度和通道数; //然后由cvSetData()根据BYTE*图像数据指针设置IplImage图像头的数据数据, //其中step指定该IplImage图像每行占的字节数,对于1通道的IPL_DEPTH_8U图像,step可以等于width。

上一篇:D - New Year Candles
下一篇:一个strcpy 的溢出例子

相关文章

相关评论