Hadoop中InputFormat分析——数据划分、调度、读取

发布时间:2016-12-10 22:56:16 编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"Hadoop中InputFormat分析——数据划分、调度、读取",主要涉及到Hadoop中InputFormat分析——数据划分、调度、读取方面的内容,对于Hadoop中InputFormat分析——数据划分、调度、读取感兴趣的同学可以参考一下。

在执行一个Job的时候,Hadoop会将输入数据划分成N个Split,然后启动相应的N个Map程序来分别处理它们。 数据如何划分?Split如何调度(如何决定处理Split的Map程序应该运行在哪台TaskTracker机器上)?划分后的数据又如何读取?这就是本文所要讨论的问题。 先从一张经典的MapReduce工作流程图出发: 1、运行mapred程序; 2、本次运行将生成一个Job,于是JobClient向JobTracker申请一个JobID以标识这个Job; 3、JobClient将Job所需要的资源提交到HDFS中一个以JobID命名的目录中。这些资源包括JAR包、配置文件、InputSplit、等; 4、JobClient向JobTracker提交这个Job; 5、JobTracker初始化这个Job; 6、JobTracker从HDFS获取这个Job的Split等信息; 7、JobTracker向TaskTracker分配任务; 8、TaskTracker从HDFS获取这个Job的相关资源; 9、TaskTracker开启一个新的JVM; 10、TaskTracker用新的JVM来执行Map或Reduce; …… 对于之前提到的三个问题,这个流程中的几个点需要展开一下。 首先是“数据如何划分”的问题。 在第3步中,JobClient向HDFS提交的资源就包含了InputSplit,这就是数据划分的结果。也就是说,数据划分是在JobClient上完成的。在这里,JobClient会使用指定的InputFormat将输入数据做一次划分,形成若干个Split。 InputFormat是一个interface。用户在启动MapReduce的时候需要指定一个InputFormat的implement。InputFormat只包含了两个接口函数: InputSplit[] getSplits(JobConf job, int numSplits) throws IOException; RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException; getSplits就是现在要使用的划分函数。job参数是任务的配置集合,从中可以取到用户在启动MapReduce时指定的输入文件路径。而numSplits参数是一个Split数目的建议值,是否考虑这个值,由具体的InputFormat实现来决定。 返回的是InputSplit数组,它描述了所有的Split信息,一个InputSplit描述一个Split。 InputSplit也是一个interface,具体返回什么样的implement,这是由具体的InputFormat来决定的。InputSplit也只有两个接口函数: long getLength() throws IOException; String[] getLocations() throws IOException; 这个interface仅仅描述了Split有多长,以及存放这个Split的Location信息(也就是这个Split在HDFS上存放的机器。它可能有多个replication,存在于多台机器上)。除此之外,就再没有任何直接描述Split的信息了。比如:Split对应于哪个文件?在文件中的起始和结束位置是什么?等等重要的特征都没有描述到。 为什么会这样呢?因为关于Split的那些描述信息,对于MapReduce框架来说是不需要关心的。框架只关心Split的长度(主要用于一些统计信息)和Split的Location(主要用于Split的调度,后面会细说)。 而Split中真正重要的描述信息还是只有InputFormat会关心。在需要读取一个Split的时候,其对应的InputSplit会被传递到InputFormat的第二个接口函数getRecordReader,然后被用于初始化一个RecordReader,以解析输入数据。也就是说,描述Split的重要信息都被隐藏了,只有具体的InputFormat自己知道。它只需要保证getSplits返回的InputSplit和getRecordReader所关心的InputSplit是同样的implement就行了。这就给InputFormat的实现提供了巨大的灵活性。 最常见的FileInputFormat(implements InputFormat)使用FileSplit(implements InputSplit)来描述Split。而FileSplit中有以下描述信息:   private Path file;      // Split所在的文件   private long start;     // Split的起始位置   private long length;    // Split的长度,getLength()会返回它   private String[] hosts; // Split所在的机器名称,getLocations()会返回它 然后,配套使用的RecordReader将从FileSplit中获取信息,解析文件名为FileSplit.file的文件中从FileSplit.start到FileSplit.start+FileSplit.length之间的内容。 至于具体的划分策略,FileInputFormat默认为文件在HDFS上的每一个Block生成一个对应的FileSplit。那么自然,FileSplit.start就是对应Block在文件中的Offset、FileSplit.length就是对应Block的Length、FileSplit.hosts就是对应Block的Location。 但是可以设置“mapred.min.split.size”参数,使得Split的大小大于一个Block,这时候FileInputFormat会将连续的若干个Block分在一个Split中、也可能会将一个Block分别划在不同的Split中(但是前提是一个Split必须在一个文件中)。Split的Start、Length都好说,都是划分前就定好的。而Split的Location就需要对所有划在其中的Block的Location进行整合,尽量寻找它们共有的Location。而这些Block很可能并没有共同的Location,那么就需要找一个距离这些Block最近的Location作为Split的Location。 还有CombineFileInputFormat(implements InputFormat),它可以将若干个Split打包成一个,目的是避免过多的Map任务(因为Split的数目决定了Map的数目)。虽然说设置“mapred.min.split.size”参数也可以让FileInputFormat做到这一点,但是FileSplit取的是连续的Block,大多数情况下这些Block可能并不会有共同的Location。 CombineFileInputFormat使用CombineFileSplit(implements InputSplit)来描述Split。CombineFileSplit的成员如下:   private Path[] paths;       // 每个子Split对应一个文件   private long[] startoffset; // 每个子Split在对应文件中的起始位置   private long[] lengths;     // 每个子Split的长度   private String[] locations; // Split所在的机器名称,getLocations()会返回它   private long totLength;     // 所有子Split长度之和,getLength()会返回它 其中前三个数组一定是长度相等并且一一对应的,描述了每一个子Split的信息。而locations,注意它并没有描述每一个子Split,而描述的是整个Split。这是因为CombineFileInputFormat在打包一组子Split时,会考虑子Split的Location,尽量将在同一个Location(或者临近位置)出现的Split打包在一起,生成一个CombineFileSplit。而打包以后的locations自然就是由所有子Split的Location整合而来。 同样,配套使用的RecordReader将从CombineFileSplit中获取信息,解析每一个文件名为CombineFileSplit.paths[i]的文件中从CombineFileSplit.startoffset[i]到CombineFileSplit.startoffset[i]+CombineFileSplit.lengths[i]之间的内容。 具体到划分策略,CombineFileSplit先将输入文件拆分成若干个子Split,每个子Split对应文件在HDFS的一个Block。然后按照“mapred.max.split.size”配置,将Length之和不超过这个值的拥有共同Location的几个子Split打包起来,得到一个CombineFileSplit。最后可能会剩下一些子Split,它们不满足拥有共同Location这个条件,那么打包它们的时候就需要找一个距离这些子Split最近的Location作为Split的Location。 有时候,可能输入文件是不可以划分的(比如它是一个tar.gz,划分会导致它无法解压),这也是设计InputFormat时需要考虑的。可以重载FileInputFormat的isSplitable()函数来告知文件不可划分,或者干脆就从头实现自己的InputFormat。 由于InputSplit接口是非常灵活的,还可以设计出千奇百怪的划分方式。 接下来就是“Split如何调度”的问题。 前面在划分输入数据的时候,不断提到Location这个东西。InputSplit接口中有getLocations()、InputFormat的implement在生成InputSplit的时候需要关心对应Block的Location,并且当多个Block需要放到一个InputSplit的时候还需要对Location做合并。 那么这个Location到底用来做什么呢?它主要就是用来给Split的调度提供参考。 先简单介绍一下JobTracker是怎样将一个Split所对应的Map任务分派给TaskTracker的。在前面的流程图中,第6步JobTracker会从HDFS获取Job的Split信息,这将生成一系列待处理的Map和Reduce任务。JobTracker并不会主动的为每一个TaskTracker划分一个任务子集,而是直接把所有任务都放在跟Job对应的待处理任务列表中。 TaskTracker定期向JobTracker发送心跳,除了保持活动以外,还会报告TaskTracker当前可以执行的Map和Reduce的剩余配额(TaskTracker总的配额由“mapred.tasktracker.map.tasks.maximun”和“mapred.tasktracker.reduce.tasks.maximun”来配置)。如果JobTracker有待处理的任务,TaskTracker又有相应的配额,则JobTracker会在心跳的应答中给JobTracker分配任务(优先分配Map任务)。 在分配Map任务时,Split的Location信息就要发挥作用了。JobTracker会根据TaskTracker的地址来选择一个Location与之最接近的Split所对应的Map任务(注意一个Split可以有多个Location)。这样一来,输入文件中Block的Location信息经过一系列的整合(by InputFormat)和传递,最终就影响到了Map任务的分配。其结果是Map任务倾向于处理存放在本地的数据,以保证效率。 当然,Location仅仅是JobTracker在分配Map任务时所考虑的因素之一。JobTracker在选择任务之前,需要先选定一个Job(可能正有多个Job等待处理),这取决于具体TaskScheduler的调度策略。然后,JobTracker又会优先选择因为失败而需要重试的任务,而重试任务又尽量不要分配到它曾经执行失败过的机器上。 JobTracker在分配Reduce任务时并不考虑Location,因为大部分情况下,Reduce处理的是所有Map的输出,这些Map遍布在Hadoop集群的每一个角落,考虑Location意义不大。 最后就是“划分后的数据如何读取”的问题。 接下来,在前面的流程图的第10步,TaskTracker就要启动一个新的JVM来执行Map程序了。在Map执行的时候,会使用InputFormat.getRecordReader()所返回的RecordReader对象来读取Split中的每一条记录(getRecordReader函数中会使用InputSplit对RecordReader进行初始化)。 咋一看,RecordReader似乎会使用Split的Location信息来决定数据应该从哪里去读。但是事实并非如此。前面也说过,Split的Location很可能是被InputFormat整合过的,可能并不是Block真正的Location(就算是,也没法保证从InputSplit在JobClient上被生成到现在的这段时间之内,Block没有被移动过)。 说白了,Split的Location其实是InputFormat期望这个Split被处理的Location,它完全可以跟实际Block的Location没有半点关系。InputFormat甚至可以将Split的Location定义为“距离Split所包含的所有Block的Location最远的那个Location”,只不过大多数时候我们肯定是希望Map程序在本地就能读取到输入数据的。 所以说,RecordReader并不关心Split的Location,只管Open它的Path。前面说过,RecordReader是由具体的InputFormat创建并返回的,它跟对应的InputFormat所使用的InputSplit必定是配对的。比如,对应于FileSplit,RecordReader要读取FileSplit.file文件中的相应区间、对应于CombineFileSplit,RecordReader要读取CombineFileSplit.paths中的每个文件的相应区间。 RecordReader对一个Path的Open操作由DFSClient来完成,它会向HDFS的NameNode获取对应文件在对应区间上的Block信息:依次有哪些Block、每个Block各自的Location。而要读写一个Block的时候,DFSClient总是使用NameNode返回的第一个Location,除非读写失败才会依次选择后面的Location。 而NameNode在处理Open请求时(getBlockLocations),在得到一个Block有哪些Location之后,会以DFSClient所在的地址为依据,对这些Location进行排序,距离越小的越排在前。而DFSClient又总是会选择排在前面的Location,所以,最终RecordReader会倾向于读取本地的数据(如果有的话)。 但是,不管Block是不是本地的,DFSClient都会向DataNode建立连接,然后请求数据。并不会因为Block是本地的而直接读磁盘上的文件,因为这些文件都是由DataNode来管理的,需要通过DataNode来找到Block所对应的物理文件、也需要由DataNode来协调对文件的并发读写。所以本地与非本地的差别仅仅在于网络传输上,前者是仅仅在本地网络协议栈上面绕一圈、而后者则是真正的网络通讯。在Block离得不远、且网络比较畅通的情况下,非Local并不意味着太大的开销。 所以Hadoop优先追求Map的Data-local,也就是输入数据存放在本地。如果不能满足,则退而求其次,追求Rack-local,也就是输入数据存放在同一机架的其他机器上,这样的话网络开销对性能影响一般不会太大。而如果这两种情况都不能满足,则网络传输可能会带来较大的开销,Hadoop会尽量去避免。这也就是之前提到的,在属于同一Split的Block没有共同Location的情况下,要计算一下离它们最近的Location的原因。 至此,关于InputFormat的数据划分、Split调度、数据读取三个问题就分析完了。

上一篇:NS2中的Linux TCP实现
下一篇:POJ 3041 Asteroids (匈牙利算法)

相关文章

相关评论