TCP传输小数据包效率问题(译自MSDN)

发布时间:2017-1-19 6:05:53 编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"TCP传输小数据包效率问题(译自MSDN)",主要涉及到TCP传输小数据包效率问题(译自MSDN)方面的内容,对于TCP传输小数据包效率问题(译自MSDN)感兴趣的同学可以参考一下。

摘要:当使用TCP传输小型数据包时,程序的设计是相当重要的。如果在设计方案中不对TCP数据包的 延迟应答,Nagle算法,Winsock缓冲作用引起重视,将会严重影响程序的性能。这篇文章讨论了这些 问题,列举了两个案例,给出了一些传输小数据包的优化设计方案。 背景:当Microsoft TCP栈接收到一个数据包时,会启动一个200毫秒的计时器。当ACK确认数据包 发出之后,计时器会复位,接收到下一个数据包时,会再次启动200毫秒的计时器。为了提升应用程序 在内部网和Internet上的传输性能,Microsoft TCP栈使用了下面的策略来决定在接收到数据包后 什么时候发送ACK确认数据包: 1、如果在200毫秒的计时器超时之前,接收到下一个数据包,则立即发送ACK确认数据包。 2、如果当前恰好有数据包需要发给ACK确认信息的接收端,则把ACK确认信息附带在数据包上立即发送。 3、当计时器超时,ACK确认信息立即发送。 为了避免小数据包拥塞网络,Microsoft TCP栈默认启用了Nagle算法,这个算法能够将应用程序多次 调用Send发送的数据拼接起来,当收到前一个数据包的ACK确认信息时,一起发送出去。下面是Nagle 算法的例外情况: 1、如果Microsoft TCP栈拼接起来的数据包超过了MTU值,这个数据会立即发送,而不等待前一个数据 包的ACK确认信息。在以太网中,TCP的MTU(Maximum Transmission Unit)值是1460字节。 2、如果设置了TCP_NODELAY选项,就会禁用Nagle算法,应用程序调用Send发送的数据包会立即被 投递到网络,而没有延迟。 为了在应用层优化性能,Winsock把应用程序调用Send发送的数据从应用程序的缓冲区复制到Winsock 内核缓冲区。Microsoft TCP栈利用类似Nagle算法的方法,决定什么时候才实际地把数据投递到网络。 内核缓冲区的默认大小是8K,使用SO_SNDBUF选项,可以改变Winsock内核缓冲区的大小。如果有必要的话, Winsock能缓冲大于SO_SNDBUF缓冲区大小的数据。在绝大多数情况下,应用程序完成Send调用仅仅表明数据 被复制到了Winsock内核缓冲区,并不能说明数据就实际地被投递到了网络上。唯一一种例外的情况是: 通过设置SO_SNDBUT为0禁用了Winsock内核缓冲区。 Winsock使用下面的规则来向应用程序表明一个Send调用的完成: 1、如果socket仍然在SO_SNDBUF限额内,Winsock复制应用程序要发送的数据到内核缓冲区,完成Send调用。 2、如果Socket超过了SO_SNDBUF限额并且先前只有一个被缓冲的发送数据在内核缓冲区,Winsock复制要发送 的数据到内核缓冲区,完成Send调用。 3、如果Socket超过了SO_SNDBUF限额并且内核缓冲区有不只一个被缓冲的发送数据,Winsock复制要发送的数据 到内核缓冲区,然后投递数据到网络,直到Socket降到SO_SNDBUF限额内或者只剩余一个要发送的数据,才 完成Send调用。 案例1 一个Winsock TCP客户端需要发送10000个记录到Winsock TCP服务端,保存到数据库。记录大小从20字节到100 字节不等。对于简单的应用程序逻辑,可能的设计方案如下: 1、客户端以阻塞方式发送,服务端以阻塞方式接收。 2、客户端设置SO_SNDBUF为0,禁用Nagle算法,让每个数据包单独的发送。 3、服务端在一个循环中调用Recv接收数据包。给Recv传递200字节的缓冲区以便让每个记录在一次Recv调用中 被获取到。 性能: 在测试中发现,客户端每秒只能发送5条数据到服务段,总共10000条记录,976K字节左右,用了半个多小时 才全部传到服务器。 分析: 因为客户端没有设置TCP_NODELAY选项,Nagle算法强制TCP栈在发送数据包之前等待前一个数据包的ACK确认 信息。然而,客户端设置SO_SNDBUF为0,禁用了内核缓冲区。因此,10000个Send调用只能一个数据包一个数据 包的发送和确认,由于下列原因,每个ACK确认信息被延迟200毫秒: 1、当服务器获取到一个数据包,启动一个200毫秒的计时器。 2、服务端不需要向客户端发送任何数据,所以,ACK确认信息不能被发回的数据包顺路携带。 3、客户端在没有收到前一个数据包的确认信息前,不能发送数据包。 4、服务端的计时器超时后,ACK确认信息被发送到客户端。 如何提高性能: 在这个设计中存在两个问题。第一,存在延时问题。客户端需要能够在200毫秒内发送两个数据包到服务端。 因为客户端默认情况下使用Nagle算法,应该使用默认的内核缓冲区,不应该设置SO_SNDBUF为0。一旦TCP 栈拼接起来的数据包超过MTU值,这个数据包会立即被发送,不用等待前一个ACK确认信息。第二,这个设计 方案对每一个如此小的的数据包都调用一次Send。发送这么小的数据包是不很有效率的。在这种情况下,应该 把每个记录补充到100字节并且每次调用Send发送80个记录。为了让服务端知道一次总共发送了多少个记录, 客户端可以在记录前面带一个头信息。 案例二: 一个Winsock TCP客户端程序打开两个连接和一个提供股票报价服务的Winsock TCP服务端通信。第一个连接 作为命令通道用来传输股票编号到服务端。第二个连接作为数据通道用来接收股票报价。两个连接被建立后, 客户端通过命令通道发送股票编号到服务端,然后在数据通道上等待返回的股票报价信息。客户端在接收到第一 个股票报价信息后发送下一个股票编号请求到服务端。客户端和服务端都没有设置SO_SNDBUF和TCP_NODELAY 选项。 性能: 测试中发现,客户端每秒只能获取到5条报价信息。 分析: 这个设计方案一次只允许获取一条股票信息。第一个股票编号信息通过命令通道发送到服务端,立即接收到 服务端通过数据通道返回的股票报价信息。然后,客户端立即发送第二条请求信息,send调用立即返回, 发送的数据被复制到内核缓冲区。然而,TCP栈不能立即投递这个数据包到网络,因为没有收到前一个数据包的 ACK确认信息。200毫秒后,服务端的计时器超时,第一个请求数据包的ACK确认信息被发送回客户端,客户端 的第二个请求包才被投递到网络。第二个请求的报价信息立即从数据通道返回到客户端,因为此时,客户端的 计时器已经超时,第一个报价信息的ACK确认信息已经被发送到服务端。这个过程循环发生。 如何提高性能: 在这里,两个连接的设计是没有必要的。如果使用一个连接来请求和接收报价信息,股票请求的ACK确认信息会 被返回的报价信息立即顺路携带回来。要进一步的提高性能,客户端应该一次调用Send发送多个股票请求,服务端 一次返回多个报价信息。如果由于某些特殊原因必须要使用两个单向的连接,客户端和服务端都应该设置TCP_NODELAY 选项,让小数据包立即发送而不用等待前一个数据包的ACK确认信息。 提高性能的建议: 上面两个案例说明了一些最坏的情况。当设计一个方案解决大量的小数据包发送和接收时,应该遵循以下的建议: 1、如果数据片段不需要紧急传输的话,应用程序应该将他们拼接成更大的数据块,再调用Send。因为发送缓冲区 很可能被复制到内核缓冲区,所以缓冲区不应该太大,通常比8K小一点点是很有效率的。只要Winsock内核缓冲区 得到一个大于MTU值的数据块,就会发送若干个数据包,剩下最后一个数据包。发送方除了最后一个数据包,都不会 被200毫秒的计时器触发。 2、如果可能的话,避免单向的Socket数据流接连。 3、不要设置SO_SNDBUF为0,除非想确保数据包在调用Send完成之后立即被投递到网络。事实上,8K的缓冲区适合大多数 情况,不需要重新改变,除非新设置的缓冲区经过测试的确比默认大小更高效。 4、如果数据传输不用保证可靠性,使用UDP。

上一篇:Android快速开源框架--afinal
下一篇:Select模型的 单服务器多客户端示范代码

相关文章

相关评论