java设计模式示例二

发布时间:2014-10-22 18:12:02编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"java设计模式示例二",主要涉及到java设计模式示例二方面的内容,对于java设计模式示例二感兴趣的同学可以参考一下。

我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图: 6、适配器模式(Adapter)  适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图: 核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码: public class Source { public void method1() { System.out.println("this is original method!"); } }   public interface Targetable { /* 与原类中的方法相同 */ public void method1(); /* 新类的方法 */ public void method2(); }   public class Adapter extends Source implements Targetable { @Override public void method2() { System.out.println("this is the targetable method!"); } }   Adapter类继承Source类,实现Targetable接口,下面是测试类: public class AdapterTest { public static void main(String[] args) { Targetable target = new Adapter(); target.method1(); target.method2(); } }   输出: this is original method! this is the targetable method! 这样Targetable接口的实现类就具有了Source类的功能。 对象的适配器模式 基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:   只需要修改Adapter类的源码即可: public class Wrapper implements Targetable { private Source source; public Wrapper(Source source){ super(); this.source = source; } @Override public void method2() { System.out.println("this is the targetable method!"); } @Override public void method1() { source.method1(); } }   测试类: public class AdapterTest { public static void main(String[] args) { Source source = new Source(); Targetable target = new Wrapper(source); target.method1(); target.method2(); } }   输出与第一种一样,只是适配的方法不同而已。 第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图: 这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码: public interface Sourceable { public void method1(); public void method2(); }   抽象类Wrapper2: public abstract class Wrapper2 implements Sourceable{ public void method1(){} public void method2(){} }   public class SourceSub1 extends Wrapper2 { public void method1(){ System.out.println("the sourceable interface's first Sub1!"); } }   public class SourceSub2 extends Wrapper2 { public void method2(){ System.out.println("the sourceable interface's second Sub2!"); } }   public class WrapperTest { public static void main(String[] args) { Sourceable source1 = new SourceSub1(); Sourceable source2 = new SourceSub2(); source1.method1(); source1.method2(); source2.method1(); source2.method2(); } }   测试输出: the sourceable interface's first Sub1! the sourceable interface's second Sub2! 达到了我们的效果!  讲了这么多,总结一下三种适配器模式的应用场景: 类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。 对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。 接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。 7、装饰模式(Decorator) 顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下: Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下: public interface Sourceable { public void method(); }   public class Source implements Sourceable { @Override public void method() { System.out.println("the original method!"); } }   public class Decorator implements Sourceable { private Sourceable source; public Decorator(Sourceable source){ super(); this.source = source; } @Override public void method() { System.out.println("before decorator!"); source.method(); System.out.println("after decorator!"); } }   测试类: public class DecoratorTest { public static void main(String[] args) { Sourceable source = new Source(); Sourceable obj = new Decorator(source); obj.method(); } }   输出: before decorator! the original method! after decorator! 装饰器模式的应用场景: 1、需要扩展一个类的功能。 2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。) 缺点:产生过多相似的对象,不易排错! 8、代理模式(Proxy) 其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图: 根据上文的阐述,代理模式就比较容易的理解了,我们看下代码: public interface Sourceable { public void method(); }   public class Source implements Sourceable { @Override public void method() { System.out.println("the original method!"); } }   public class Proxy implements Sourceable { private Source source; public Proxy(){ super(); this.source = new Source(); } @Override public void method() { before(); source.method(); atfer(); } private void atfer() { System.out.println("after proxy!"); } private void before() { System.out.println("before proxy!"); } }   测试类: public class ProxyTest { public static void main(String[] args) { Sourceable source = new Proxy(); source.method(); } }   输出: before proxy! the original method! after proxy! 代理模式的应用场景: 如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法: 1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。 2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。 使用代理模式,可以将功能划分的更加清晰,有助于后期维护! 9、外观模式(Facade) 外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例) 我们先看下实现类: public class CPU { public void startup(){ System.out.println("cpu startup!"); } public void shutdown(){ System.out.println("cpu shutdown!"); } }   public class Memory { public void startup(){ System.out.println("memory startup!"); } public void shutdown(){ System.out.println("memory shutdown!"); } }public class Computer { private CPU cpu; private Memory memory; private Disk disk; public Computer(){ cpu = new CPU(); memory = new Memory(); disk = new Disk(); } public void startup(){ System.out.println("start the computer!"); cpu.startup(); memory.startup(); disk.startup(); System.out.println("start computer finished!"); } public void shutdown(){ System.out.println("begin to close the computer!"); cpu.shutdown(); memory.shutdown(); disk.shutdown(); System.out.println("computer closed!"); } }   User类如下: public class User { public static void main(String[] args) { Computer computer = new Computer(); computer.startup(); computer.shutdown(); } }   输出: start the computer! cpu startup! memory startup! disk startup! start computer finished! begin to close the computer! cpu shutdown! memory shutdown! disk shutdown! computer closed! 如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式! 10、桥接模式(Bridge) 桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图: 实现代码: 先定义接口: public interface Sourceable { public void method(); }   分别定义两个实现类: public class SourceSub1 implements Sourceable { @Override public void method() { System.out.println("this is the first sub!"); } }   public class SourceSub2 implements Sourceable { @Override public void method() { System.out.println("this is the second sub!"); } }   定义一个桥,持有Sourceable的一个实例: public abstract class Bridge { private Sourceable source; public void method(){ source.method(); } public S