在博客中使用LaTeX插入数学公式 - Sinte

发布时间:2017-1-25 7:19:46 编辑:www.fx114.net 分享查询网我要评论
本篇文章主要介绍了"在博客中使用LaTeX插入数学公式 - Sinte",主要涉及到在博客中使用LaTeX插入数学公式 - Sinte方面的内容,对于在博客中使用LaTeX插入数学公式 - Sinte感兴趣的同学可以参考一下。

在博客中使用LaTeX插入数学公式

在学习机器学习中会接触到大量的数学公式,所以在写博客是会非常的麻烦。用公式编辑器一个一个写会非常的麻烦,这时候我们可以使用LaTeX来插入公式。

写这篇博文的目的在于,大家如果要编辑一些简单的公式,就不必自己写,直接copy过去修改下就能用了。所以下面仅列出些常用的grammar。随着、机器学习的深入会添加更多的相关公式。

LaTeX公式基础

这里的基础嫌烦的话可以先不看,直接看杂例,有不理解的地方在回来看这里的内容。此处知识摘取了一些简单的语法,如果需要完整的LaTeX书写数学公式的文档,见参考文献。

排版方式

行级元素(inline),行级元素使用$...$,两个$表示公式的首尾。

块级元素(displayed),块级元素使用$$...$$。块级元素默认是居中显示的。

常用西文符号

\alpha, \beta, …, \omega代表α,β,…ω. 大写字母,使用\Gamma, \Delta, …, \Omega代表Γ,Δ,…,Ω.

上标与下标

使用 ^和 _ 表示上标和下标. 例如,x_i^2:\(x_i^2\)\log_2 x: \(\log_2 x\)

使用{}来消除二义性——优先级问题。例如10^10:\(10^10\),显然是错误的,要显示\(10^{10}\),正确的语法应该是10^{10}。同样的,还有个例子,x_i^2:\(x_i^2\)x_{i^2}:\(x_{i^2}\)的区别。

括号

小括号和中括号直接使用,大括号由于用来分组,所以需要转义。\{1+2\}:\(\{1+2\}\)

运算

  • 分数:\frac{}{}。例如,\frac{1+1}{2}+1: \(\frac{1+1}{2}+1\)
  • 求和:\sum_1^n:\(\sum_1^n\)
  • 积分:\int_1^n:\(\int_1^n\)
  • 极限:lim_{x \to \infty:\(\lim_{x \to \infty}\)
  • 矩阵:$$\begin{matrix}…\end{matrix}$$,使用&分隔同行元素,\\换行。例如:

    $$    \begin{matrix}    1 & x & x^2 \\    1 & y & y^2 \\    1 & z & z^2 \\    \end{matrix}$$

    得到的公式为:
    \[\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\\end{matrix}\]

杂例

  • $$h(\theta)=\sum_{j=0}^n \theta_jx_j$$
    \[h(\theta)=\sum_{j=0}^n \theta_jx_j(线性模型)\]

  • $$J(\theta)=\frac1{2m}\sum_{i=0}(y^i-h_\theta(x^i))^2$$
    \[J(\theta)=\frac1{2m}\sum_{i=0}^m(y^i-h_\theta(x^i))^2(均方误差\;or\;cost function)\]

  • $$\frac{\partialJ(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j $$
    \[ \frac{\partial J(\theta)}{\partial\theta_j }=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j (批量梯度下降的梯度算法)\]

  • $$f(n) =\begin{cases}n/2,  & \text{if $n$ is even} \\3n+1, & \text{if $n$ is odd}\end{cases}$$

    \[f(n) =\begin{cases}n/2, & \text{if $n$ is even} \\3n+1, & \text{if $n$ is odd}\end{cases}\]

  • $$\left\{ \begin{array}{c}    a_1x+b_1y+c_1z=d_1 \\     a_2x+b_2y+c_2z=d_2 \\     a_3x+b_3y+c_3z=d_3\end{array}\right. $$

    \[\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3\end{array}\right. \]

  • $$X=\left(    \begin{matrix}        x_{11} & x_{12} & \cdots & x_{1d}\\        x_{21} & x_{22} & \cdots & x_{2d}\\        \vdots & \vdots & \ddots & \vdots\\        x_{m1} & x_{m2} & \cdots & x_{md}\\    \end{matrix}\right)=\left(     \begin{matrix}            x_1^T \\            x_2^T \\            \vdots\\            x_m^T \\        \end{matrix}\right)$$

    \[X=\left( \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m1} & x_{m2} & \cdots & x_{md}\\ \end{matrix}\right)=\left( \begin{matrix} x_1^T \\ x_2^T \\ \vdots\\ x_m^T \\ \end{matrix}\right)\]

  • $$\begin{align}\frac{\partial J(\theta)}{\partial\theta_j}& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j\end{align}$$

    \[\begin{align}\frac{\partial J(\theta)}{\partial\theta_j}& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j\end{align}\]

总结

本文主要写了些用LaTeX来写数学公式的方法以及几个例子。杂例的前3个可以看到是用梯度法解决线性模型的几个公式,后面的几个是随意摘取的,尽可能包含大部分LaTeX的用法。杂例会在我学习机器学习的过程中不断添加,希望可以给大家带来方便吧。下面的参考文献包含了中英文,几乎包含了所有LaTeX书写数学公式的语法,有需要的可以去看看。

参考文献

上一篇:Don't make a promise when you are in Joy. Don't reply when you are Sad.Don't take decisions when you are Angry.Think Twice.Act Wise.
下一篇:ps遇到的问题及笔记

相关文章

相关评论